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Abstract

The spectral-like three-point combined compact difference (sp-CCD) scheme is developed for the shallow water

models on a sphere, which is originally proposed by Chu and Fan (J. Comput. Phys. 140 (1998) 370). A standard test set

proposed by Williamson et al. (J. Comput. Phys. 102 (1992) 211) is used to evaluate the accuracy of the new method. It

is shown that the accuracy of the method is comparable to that of the spherical harmonics model as a whole. The

relative efficiency of the method with respect to the spherical harmonics model appears from the resolution of

512� 256, and it becomes significant for the higher resolutions. The test results suggest that the method could be
extended to numerical atmospheric models.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent analyses suggest that highly precise and effective computational methods are required for the

global climate models [19]. The spherical transform method is widely used for its accuracy, but its com-

putational cost is rapidly larger in the calculation with higher grid resolution. For example, the cost for

two-dimensional problem on a sphere is proportional to N 3, where N is the number of grid points in the

latitude direction.

Various methods have been proposed as alternative methods to the current spectral transform
method. Williamson et al. [19] proposed the standard suit of test cases to the shallow water equations
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in spherical geometry in the aid of the search for promising methods. Merilees [14] and Fornberg [5]

proposed pseudospectral method utilizing double Fourier series to compute the spatial derivatives on

latitude–longitude grids. They applied it to the shallow water equations on the sphere. Cheong [2,3]

proposed a spectral method using double Fourier series as basis functions, and evaluated the solutions

of all Williamson�s test cases. These pseudospectral and spectral methods utilizing double Fourier series
realize high accuracy and a reduction of computational cost by using the FFT method instead of the

associated Legendre transforms. Finite difference methods, which are widely used in the various fluid

simulations, are also investigated since their computational cost is small. In the problem mentioned
above, the cost of finite difference methods is proportional to N 2 while that of the double Fourier

methods is proportional to N 2 logN . Spotz et al. [17] examined a fourth-order three-point compact
difference scheme with a spectral spatial filter for Williamson�s test cases, and concluded that the ac-
curacy of their method is comparable to the spectral transform method based on the spherical har-

monics for all seven test cases. When we consider the global models with longitude–latitude grids,

additional treatment is required to avoid the �polar problem� due to the concentration of grid points
near the poles. Filtering schemes are used in the above three methods so that small scales are di-

minished near the poles. Ran�cci�cc et al. [15] used a finite difference scheme on the grid geometry of the
expanded spherical cube, applied it to a global shallow water model, and showed that the model works

without polar filter. The finite volume scheme is also investigated by Lin and Rood [11]. They pro-

posed a global shallow water model based on the flux form semi-Lagrangian scheme and calculated

two cases of the Williamson�s standard test cases. They concluded that the scheme is competitive in
accuracy.

Compact difference (CD) schemes, which were introduced in the 1930s, have shown its accuracy for the

small scales significantly higher than traditional schemes with the same stencil size. Lele [10] generalized the

idea on compact schemes and suggested that the resolution, which means the accuracy in Fourier space,
should be considered in addition to the formal accuracy. He also proposed spectral-like compact difference

schemes and compact schemes for interpolation and filtering. Many compact schemes are proposed and

used in different flow calculations [1,6,9,13]. It is noted that Spotz et al. [17] used a fourth order compact

scheme, but their filter is a spectral scheme. In 1998, Chu and Fan [4] proposed a three-point combined

compact difference (CCD) scheme that uses a combined derivative formulation, and showed that it has an

improved spectral resolution with a cost which is comparable to that of the standard compact scheme. A

similar class of schemes was also studied by Mahesh [12] and referred as the coupled-derivative or C–D

schemes.
In this paper, we attempt to derive a combined compact difference scheme with spectral-like reso-

lution, and evaluate its performance using the test cases for the shallow water equations in spherical

geometry proposed by Williamson et al. We use a compact scheme for spatial filter that is proposed by

Lele [10]. This paper is organized as follows. Section 2 describes the CCD scheme with spectral-like

resolution derived in this study. The governing equations of the Williamson�s standard test suite that
are used for performance measurements and our solution method including a spatial filtering scheme are

explained in Section 3. Section 4 presents the results of the test cases. Discussions and conclusions are

drawn in Section 5.

2. A CCD scheme with spectral-like resolution

Consider a uniform grid with spacing Dx and the value of a function f ðxÞ at ith grid point xi is given by
fi � f xið Þ. In CCD schemes, the derivatives of the function at a grid point are approximated by using them
and the value of the function and its derivatives at the neighboring points. Chu and Fan [4] proposed a

sixth-order and eighth-order scheme. The eighth-order scheme can be written as
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where 12 parameters of ak; bk; ck; dk (k ¼ 1; 2; 3) are given as

a1 ¼
19

32
; b1 ¼ � 1

8
; c1 ¼

1

96
; d1 ¼

35

32
; ð2:4Þ

a2 ¼
29

16
; b2 ¼ � 5

16
; c2 ¼

1

48
; d2 ¼ 4; ð2:5Þ

a3 ¼ � 105
16

; b3 ¼
15

8
; c3 ¼ � 3

16
; d3 ¼ � 105

16
: ð2:6Þ

These parameters are determined by minimizing the truncation errors of (2.1)–(2.3). In this case, the formal

accuracies of (2.1)–(2.3) become eighth-order, eighth-order, and sixth-order, respectively. Lele pointed out

that the resolution of the scheme is also important. To evaluate the resolution characteristics of the scheme,

Fourier analysis is commonly used. The function can be approximated by the following Fourier series as:

f ðxÞ ¼
XN=2

k¼�N=2

bfkfk expð2pikx=LÞ; ð2:7Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and L is the length of the domain and N is the number of grid points, respectively. One

Fourier mode can be written as fk ¼ bfkfk expðiwsÞ where w ¼ 2pkDx=L is the scaled wavenumber and
s ¼ x=Dx is the scaled coordinate, where Dx ¼ L=N and w < p.
The derivative of fk is

d

dx
fk ¼

iw
Dx

fk: ð2:8Þ

However, we obtain in finite difference approximation,

d
dx

fk ¼
iw0

Dx
fk; ð2:9Þ

where w0 is a function of w and is called the modified wavenumber. The modified wavenumber shows the
resolution characteristics of the scheme. A difference scheme is considered to be capable of resolving waves

in the range of wavenumber w < W well when the relative error eðwÞ satisfies

eðwÞ ¼
w0 wð Þ � w
�� ��

w
< � ð0 < w < W < pÞ; ð2:10Þ

where � is a small number. The modified wavenumber of the first derivative w0 wð Þ for this CCD scheme is
given by
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w0ðwÞ ¼ 2 1ðf½ þ b2c3 þ 3c2b3Þd1 þ 2b1ð � b1c3 þ c1b3Þd2 � 3b1c2ð þ c1b2Þd3g sinw
þ b2ðf þ c3Þd1 � b1ð � 2b1c3 þ 2c1b3Þd2 � c1d3g sin 2wþ b2c3ðf � c2b3Þd1
� b1c3ð � c1b3Þd2 þ b1c2ð � c1b2Þd3g sin 3w
= 1½ þ 2 a1b2ð þ b1a2Þ þ 2 a1c3ð � c1a3Þ
þ 2 b2c3ð þ c2b3Þ þ 2 a1f þ b2 þ c3 þ a2c3ð � c2a3Þb1 þ 3 a1c3ð � c1a3Þb2 þ a1c2ð � c1a2Þb3g
� coswþ 2 a1b2ðf � b1a2Þ þ a1c3ð � c1a3Þ þ b2c3ð � c2b3Þg cos 2wþ 2 b2c3ðf � c2b3Þa1
� b1c3ð � c1b3Þa2 þ b1c2ð � c1b2Þa3g cos 3w
: ð2:11Þ

The modified wavenumber w0 wð Þ and the error e wð Þ for various schemes are plotted into Figs. 1 and 2,
respectively. The exact differentiation is shown as the straight line. CD and CCD schemes have higher
resolution than the ordinary central difference schemes. The spectral-like CD scheme has much higher

resolution than the other schemes. The slope of the error of e wð Þ near w ¼ 0 in Fig. 2 corresponds to the
order of accuracy of the scheme. To research the higher resolution relationship, we relaxed the requirement

for formal accuracy of (2.2) and (2.3) by setting the two parameters d2 and d3 free. In this case, the other 10
parameters are given as

a1 ¼
19

32
; b1 ¼ � 1

8
; c1 ¼

1

96
; d1 ¼

35

32
; ð2:12Þ

a2 ¼
11d2 � 15
16

; b2 ¼ � 3d2 � 7
16

; c2 ¼
d2 � 3
48

; ð2:13Þ

Fig. 1. The modified wavenumber for the first derivative approximations: (FD2) second-order central differences; (FD4) fourth-order

central differences; (FD6) sixth-order central differences; (FD8) eighth-order central differences; (FD10) tenth-order central differences;

(Pad�ee) standard Pad�ee scheme; (CCD6) sixth-order combined compact difference scheme; (CCD8) eighth-order combined compact

difference scheme; (CD10) tenth-order compact difference scheme; (sp-CD4) spectral-like fourth-order compact difference scheme;

(CCD8-1p) new eighth-order combined compact difference scheme with fixed d3; (sp-CCD8) new eighth-order combined compact
difference scheme.
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a3 ¼ d3; b3 ¼ � 8d3 þ 15
20

; c3 ¼
4d3 þ 15
60

; ð2:14Þ

respectively. In this approximation, the formal accuracy of (2.2) and (2.3) become sixth-order, fourth-order,

respectively. The formal accuracy of (2.1) degrades to sixth-order due to using the third-order derivatives
with fourth-order accuracy, and the leading order truncation error of (2.1) is proportional to Dx6f 7ð Þ. We

eliminate this term by using (2.3) which has the leading order truncation error of OðDx4f ð7ÞÞ. We obtain
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which has the truncation error of OðDx8f ð9ÞÞ. By rearranging (2.2), (2.3), and (2.13)–(2.15), we can recover
the form of (2.1)–(2.3) with the parameters which are given as

a1 ¼
8d3 þ 195
240

; b1 ¼ � 16d3 þ 255
1200

; c1 ¼
4d3 þ 45
1800

; d1 ¼
8d3 þ 315
240

; ð2:16Þ

a2 ¼
11d2 � 15
16

; b2 ¼ � 3d2 � 7
16

; c2 ¼
d2 � 3
48

; ð2:17Þ

a3 ¼ d3; b3 ¼ � 8d3 þ 15
20

; c3 ¼
4d3 þ 15
60

: ð2:18Þ

respectively. Note that in this case the formal accuracy of Eq. (2.1) remains eighth-order. By substituting

(2.16)–(2.18) into (2.11), the modified wavenumber can be written as a function of w, d2, and d3, that can be
written as w0 ¼ w0 w; d2; d3ð Þ. These two parameters are used to make the modified wavenumber closer to the
exact wavenumber. The two parameters have been determined by minimizing the value of

Fig. 2. The error eðwÞ for the first derivative approximations. For sp-CD4, error was calculated by using the value of a, b, and c in
(3.1.6) of [10], and the relationship for a and b in (2.2.8) of [10].
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Sðd2; d3Þ ¼
Z wm

0

w0ðw; d2; d3Þ
�

� w
�2
dw: ð2:19Þ

Since w0ðp; d2; d3Þ ¼ 0, the domain near w ¼ p should be excluded from integration in (2.19). In this study,
wm is chosen as wm ¼ 4

5
p.

We have obtained values of two parameters as d2 ¼ �0:86774 and d3 ¼ �2:1721. It should be noted that
these values might not give the true minimum value of Sðd2; d3Þ, since there are many local minimums in the
numerical approximation of Sðd2; d3Þ. When d3 is fixed to � 105

16
, we can find the minimum easily and obtain

an eighth-order scheme which third-order derivative is sixth-order accurate. In this case, however, the

improvemant of the resolution is not sufficient. As shown in Fig. 1, the modified wavenumber for our CCD

scheme almost coincides with that for the spectral-like compact difference scheme proposed by Lele [10].
We call these new class of CCD schemes spectral-like CCD (sp-CCD).

(2.1)–(2.3) can be solved by inverting following the periodic block-tridiagonal system:
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The operation count for this scheme is proportional to N , which is the same order as the ordinary difference
scheme.

3. Solution method

Williamson�s standard test suites [19] are used for performance measurement of the sp-CCD scheme.
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3.1. Governing equations

The shallow water equations on a sphere whose radius is a can be written in advective form as

ou
ot

þ v � ru� f
�

þ u
a
tan h

�
vþ g

a cos h
oh
ok

¼ 0; ð3:22Þ

ov
ot

þ v � rvþ f
�

þ u
a
tan h

�
uþ g

a
oh
oh

¼ 0; ð3:23Þ

and

oh�

ot
þ v � rh� þ h�

a cos h
ou
ok

�
þ ov cos h

oh

�
¼ 0; ð3:24Þ

where h� is the depth of the fluid and h is the height of the free surface above a reference sphere. h ¼ h� þ hs
where hs is the height of the underlying topography. Here v is the horizontal vector velocity of the fluid with
components u and v in the longitudinal (k) and latitudinal (h) directions, respectively, g the gravitational
constant, f the Coriolis parameter given by 2X sin h, where X is the rotation rate of the sphere, and the

longitudinal, latitudinal, and outward radial unit vectors are îi, ĵj, and k̂k, respectively. The r operator is the

spherical horizontal gradient operator given by

rð�Þ � îi

a cos h
o

ok
ð�Þ þ ĵj

a
o

oh
ð�Þ: ð3:25Þ

The relative vorticity f and horizontal divergence d are defined by

f � k̂k � ðr � vÞ ¼ 1

a cos h
ov
ok

�
� ou cos h

oh

�
; ð3:26Þ

and

d � r � v ¼ 1

a cos h
ou
ok

�
þ ov cos h

oh

�
; ð3:27Þ

respectively.

3.2. Numerical method

3.2.1. Grid system

The longitude-latitude grid system used by Fornberg [5] was utilized for computation. The grid points in

this system are arranged so that no grid points are at the poles. This grid system has the advantage of

avoiding singularity at the poles and enabling the periodic boundary conditions to be imposed in both

longitudinal and latitudinal direction. Fig. 3 illustrates how the periodic boundary conditions can be im-

posed in latitudinal direction. It should be noted that the sign of the quantities must be adjusted properly
when using the periodic boundary condition in latitudinal direction, depending on whether the quantities

are scalar or vector. The spatial derivatives of each physical quantity in the shallow water equations were

calculated by sp-CCD scheme and the time integration was done by the fourth-order Runge–Kutta method.

The stability limit of the scheme is given by cDt=Dx6 1:06 in the one-dimensional problem, where c is the
advective velocity, Dt the time step, and Dx the grid spacing.
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3.2.2. Low-pass spatial filter

The concentration of the grid points near the poles causes numerical instability. A spatial filter is used to

remove this instability. In the Appendix of [10], Lele proposed a pentadiagonal implicit spatial filter in the

form of

f i þ a f iþ1
�

þ f i�1
�
þ b f iþ2

�
þ f i�2

�
¼ afi þ

b
2
ðfiþ1 þ fi�1Þ þ

c
2
ðfiþ2 þ fi�2Þ þ

d
2
ðfiþ3 þ fi�3Þ; ð3:28Þ

where f i is the filtered value at grid point xi. The Fourier analysis of (3.28) gives the transfer function

T ðwÞ ¼ aþ b cosðwÞ þ c cosð2wÞ þ d cosð3wÞ
1þ 2a cosðwÞ þ 2b cosð2wÞ : ð3:29Þ

There are six parameters of a, b, c, d, a, and b. Lele proposed a way of determining those parameters in
order to adjust the location of cutoff in the transfer function [10]. He required a formal fourth-order ac-

curacy in (3.28), i.e.,

T ð0Þ ¼ 1; d
2T
dw2

ð0Þ ¼ 0; ð3:30Þ

and

T ðpÞ ¼ 0; d
2T
dw2

ðpÞ ¼ 0; ð3:31Þ

and

T ðw1Þ ¼ v1; T ðw2Þ ¼ v2; ð3:32Þ

where w1, w2, v1, and v2 are specified to determine the cutoff wavenumber of the filtering. However, the
obtained filter is not necessarily valid. That is, the transfer function may have the overshoot (T ðwÞ > 1)
and/or the undershoot (T ðwÞ < 0) depending on the combination of the values of w1, w2, v1, and v2. It is
difficult to show the condition of overshooting and/or undershooting for given w1, w2, v1, and v2. Therefore,
applying this way of determining parameters is troublesome because of the filtering of small scales near the

poles. Therefore another way of determining the parameters is desired. We determined those parameters by

using the constraints instead of (3.32),

Fig. 3. The longitude–latitude grid system used in this paper. The latitude grid points are shifted a half-grid length. The periodic

boundary conditions can be applied for the latitudinal direction.
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T ðwcÞ ¼
1

2
; ð3:33Þ

and

0 < T ðwÞ < 1 for 0 < w < p; ð3:34Þ

and requiring the filter should have sharp cutoff property as far as possible. Here wc (0 < wc < p) is
specified to determine the critical wavenumber of the filtering. By this way, the parameters are determined

as

b ¼ min 4� 3 coswc þ 2 cos2 wc þ cos3 wc

16� 2 coswc þ 4 cos2 wc þ 6 cos3 wc
;
3þ 3 coswc þ 3 cos2 wc � cos3 wc

10þ 2 coswc þ 10 cos2 wc � 6 cos3 wc

� �
;

a ¼ coswc

2ð1þ cos2 wcÞ
2b

�
� 3þ ð1� 6bÞ cos2 cw

�
;

a ¼ 3a þ 2
4

; b ¼ 16a þ 10b þ 9
16

; c ¼ a þ 4b
4

; d ¼ 6b � 1
16

:

ð3:35Þ

Fig. 4 shows the transfer function for our filtering scheme with various wc. In this study, wc is chosen as

wc ¼
wmaxf1� 0:75ð1� cos hÞ5g ðfor longitudinal directionÞ;
wmax ðfor latitudinal directionÞ;

(
ð3:36Þ

where wmax is set to wmax ¼ 0:952p. This filtering scheme is a pentadiagonal system and solved with the cost
of proportional to N . Shang [16] proposed a tridiagonal implicit spatial filter scheme in CEM problem. By

changing parameters, the property of the filter can be controlled. It is, however, not enough for our purpose
where most of the waves should be filtered out. In comparison with the case where the filter proposed by

Shang is applied, the calculation with our filter is more stable and the results are more accurate. The l2 error
for the Test Case 1 (see Section 4) with our filter, for example, is about a half of that in [18]. The filtering is

applied to the variable of u; v; and h in shallow water Eqs. (3.22)–(3.24) for each time step and each step of

Fig. 4. Transfer functions T for the compact filter scheme with various parameter values.
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the Runge–Kutta method. It is noted that we applied filtering to h, not to h�, to prevent spurious smoothing
associated with the surface topography.

4. Results

The standard test set proposed by Williamson et al. [19] consists of seven test cases. Detailed mathe-

matical formulas of the test cases and requested performance measurements are intensively described in
[19]. Test Cases 1–4 have analytic solutions. Since Test Cases 5–7 have no analytic solutions, numerical

solutions of high-resolution spherical harmonics model are regarded as true solutions in error measure-

ments. A T341 model which has the grid numbers of 1024� 512 is used to generate reference solutions in
this study. The spherical harmonics model was coded by using the subroutine library for scientific com-

puting �ispack� [7]. The following normalized global errors are used for error measurements in all test cases

l1ðqÞ ¼
I jqðk; hÞ � qTðk; hÞj½ 


I jqTðk; hÞj½ 
 ; ð4:37Þ

l2ðqÞ ¼
I jqðk; hÞ � qTðk; hÞj2
h i� �1=2

I jqTðk; hÞj2
h i� �1=2 ; ð4:38Þ

l1ðqÞ ¼
maxall k; h qðk; hÞ � qTðk; hÞj j

maxall k; h qTðk; hÞj j ; ð4:39Þ

where q and qT are physical quantity of the numerical solution and the true solution, respectively, and I ½�
 is
a discrete approximation to the global integral

Ic½q
 ¼
1

4p

Z 2p

0

Z p=2

�p=2
qðk; hÞ cos hdhdk; ð4:40Þ

which gives the global mean of a physical quantity.

In this study, I ½�
 is defined as

I ½q
 ¼ 1

4p

XNk

k¼1

XNh

l¼1
qk;l cos hl � 2 sinðDh=2ÞDk; ð4:41Þ

where Nk and Nh are the number of grid points in longitudinal and latitudinal direction, Dk ¼ 2p=Nk,

Dh ¼ p=Nh, and qk;l is a physical quantity at the grid point of ðk; hÞ ¼ ðkk; hlÞ ¼ ð�p þ kDk;�p=2 þ
ðl� 1=2ÞDhÞ, respectively. This is defined in order that I �½ 
 satisfies I ½q
 ¼ q independently of the grid reso-
lution when q is constant.
In this study, the calculation was performed in double precision format and with the grid numbers of

128� 64 (Nk ¼ 128 and Nh ¼ 64) unless mentioned otherwise.

4.1. Test Case 1 – advection of cosine bell over the pole

Test Case 1 is the test for the advective component of a numerical scheme. For this test case, a cosine bell

is advected once around the sphere by the flow of solid body rotation. The parameter a is used to set the
direction of the flow so that the cosine bell will be advected directly around the equator (a ¼ 0), directly
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over the poles (a ¼ p=2), and at slight angles (0.05 radians) to these extremes, to check the effects of
asymmetries and the �polar problem�.
The calculation was done with the time step of 576 s. The height field after one rotation for the case of

a ¼ p=2� 0:05 is shown in Fig. 5. Though the initial height field is also plotted in Fig. 5 with dashes, it is
almost indistinguishable from the final height field. The error field shown in Fig. 6 has a nearly concentric

circular structure with alternating sign having the maximum amplitude near the edge of the cosine bell. This

Fig. 5. Height field after one rotation for Test Case 1 with a ¼ p=2� 0:05. The contour interval is 100 m.

Fig. 6. Height error after one rotation for Test Case 1 with a ¼ p=2� 0:05. The contour interval is 1.25 m. Negative regions are
shaded.
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structure is due to the initial discontinuity of the second and higher order derivative of the cosine bell at its

edge. The fact that only a little distortion can be seen in the structure indicates accuracy of dispersion

relation for wide range of wavenumbers in our scheme. That is, not only the cosine bell, the advection of

that structure which has relatively short scale variation is also properly handled by our scheme. It should be

noted that the maximum amplitude of that error field is as small as 0.3% of the height of the cosine bell. For

the other cases, the results are quite similar to the case described above.

Table 1 shows the values of l1ðhÞ, l2ðhÞ, and l1ðhÞ errors after one rotation for various schemes, where
the values for the double Fourier method are read from Fig. 9(a) of [2]. It indicates that the compact
difference schemes have much higher accuracy than the ordinary central difference schemes and that the

spectral-like schemes (sp-CD4 and sp-CCD8) are more accurate than ordinary schemes. It is concluded that

these results directly reflect the resolution of the scheme on the sphere. The l2ðhÞ error of the sp-CCD
scheme is about 10 times larger than that of the spherical harmonics method. The errors of the double

Fourier method are larger than those of sp-CCD, however, it should be considered that the time integration

scheme might be different from that used in this study. The l2ðhÞ error of the method of Spotz et al. [17] is
about 10 times larger than that of sp-CCD method. The l2ðhÞ error of spherical harmonics method cal-
culated by them [17] is also larger than that calculated by us. They used a leapfrog method for the time
integration.

The time evolution of the normalized mean

M ¼ ðI ½h
 � I ½hT 
Þ=I ½h0
; ð4:42Þ

the variance

V ¼ fI ½ðh� I ½h
Þ2
 � I ½ðhT � I ½hT 
Þ2
g=I ½ðh0 � I ½h0
Þ2
; ð4:43Þ

the maximum

hmax ¼ max
allk;h

h k; hð Þ
�

�max
allk;h

hT k; hð Þ
��

Dh; ð4:44Þ

and the minimum [19]

Table 1

l1ðhÞ, l2ðhtÞ, and l1ðhÞ errors for Tast Case 1 after one rotation with grid resolution of 128� 64 for various schemes ða ¼ p=2� 0:05Þ

Scheme l1ðhÞ l2ðhÞ l1ðhÞ

FD2 1.9396 0.7456 0.5932

FD4 0.3570 0.1172 0.0798

FD6 0.1544 0.0414 0.0344

FD8 0.0904 0.0222 0.0128

sp-CD4 0.0080 0.0042 0.0038

CCD6 0.0348 0.0102 0.0070

CCD8 0.0158 0.0058 0.0048

sp-CCD8 0.0074 0.0038 0.0028

SH 0.0004 0.0002 0.0004

DF 0.047 0.014 0.012

COM4/SHF N/A 0.042 N/A

(FD2) second-order central differences; (FD4) fourth-order central differences; (FD6) sixth-order central differences; (FD8) eighth-

order central differences; (sp-CD4) spectral-like fourth-order compact difference scheme; (CCD6) sixth-order combined compact

difference scheme; (CCD8) eighth-order combined compact difference scheme; (sp-CCD8) new spectral-like eighth-order combined

compact difference scheme; (SH) spectral transform method using spherical harmonics; (DF) spectral transform method using double

Fourier series read from Fig. 9(a) of [3]; (COM4/SHF) fourth-order compact difference scheme with the spherical harmonic filter taken

from Table II of [17].
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hmin ¼ min
allk;h

h k; hð Þ
�

�min
allk;h

hT k; hð Þ
��

Dh ð4:45Þ

are calculated for error measurement. Here h0 is the initial field and Dh is the difference between the
maximum and minimum values of the true initial solution. The time evolution of the normalized mean is

averagely flat. It shows that the total mass is conserved well during the calculation. The small values of the

variance and the maximum, which are of the order of 10�4 and 10�5, respectively, show that the distortion
and damping of the cosine bell is sufficiently small. The small value of the minimum which is of the order of

10�4 shows that the amplitude of the concentric structure around the cosine bell is small, and its time

evolution indicates that the growth of the amplitude tends to slow down. These tendency are also similar for

all cases of a.

4.2. Test Case 2 – global steady-state nonlinear zonal geostrophic flow

Test Case 2 is the test for the hold of a steady-state solution to the nonlinear shallow water equations.

The initial condition that should be kept through time integration consists of solid body rotational flow

with the corresponding geostrophic height field. The parameter a is also used in this test case, which is the
angle between the axis of the computational grid and the axis about which geostrophic flow take place. In

this system, the numerical error can propagate as gravity wave with the velocity that is much greater than
that of the flow. Therefore, for the purely explicit scheme, the time step restricted by the CFL condition is

almost determined by the speed of the gravity wave and the longitudinal grid spacing near the poles.

Williamson et al. [19] recommended to modify the initial wind and height fields so they satisfy a discrete

nonlinear geostrophic relationship consistent with the scheme. In this study, however, no modification was

made on the initial fields. The calculation was done with the time step of 30 s. The height field (not shown)

is almost indistinguishable from the initial height field. The strong flow passes the polar region for this case,

however, no significant error can be seen in the height field, which is at most 0.16 m. The error of v is about

10 times larger than that of h. The fluctuation due to the gravity wave can be seen in l1 error of h. Fig. 7
shows l2 hð Þ and l2ðvÞ errors for different resolutions in the case of a ¼ p=2� 0:05 at Day 5. In this case, the
time step is set to 2.5 s for all resolutions. The rate of convergence may be estimated as fourth order. This

corresponds to the accuracy of the fourth-order spatial filer. The error for the spectral method is of the

order of rounding error [3] or 10�10 [8] because the method uses vorticity–divergence form or stream

function, velocity potential form in which one of the variables vanishes in this case. The error for the

method of Spotz et al. [17] is also small, which is of the order of 10�8 because the method uses vector

invariant form and the divergence of the velocity field vanishes in this case.

Fig. 7. l2 errors at day 5 versus model resolution for Test Case 2, a ¼ p=2� 0:05.
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4.3. Test Case 3 – steady-state nonlinear zonal geostrophic flow with compact support

Test Case 3 is similar to the Test Case 2 except that the initial wind field is nonzero in a limited region. In

this test case, some integration is needed to obtain the initial height field from the initial wind field. In this

study, that integration was done numerically by the Simpson�s formula with sufficient division of the in-
tegral range to converge within the order of 1012 in term of the relative error. In the case of a ¼ p=3, the
strong flow passes the polar region, so this case is harsh to our scheme.

The calculation was done with the time step of 30 s. The height field (not shown) is indistinguishable

from the initial height field and no significant error can be seen. The amplitude of these errors is as small as

that of the Test Case 2 since there is no essential differences between Test Case 2 and 3 for our scheme. The
height error, however, localizes in downstream of the pole whereas the error for the Test Case 2 is located

away from the poles. The error for the spectral method is very small, which is of the order of 10�8 [3] or

10�10 [8], for the same reason for the Test Case 2.

4.4. Test Case 4 – forced nonlinear system with a translating low

Test Case 4 is the forced nonlinear system with translating low superimposed on a jet stream that is

symmetrical about the equator. The parameter u0 is used in this test case to specify the intensity of the jet.
The forcing term is defined using temporal differentiation, spatial differentiation, and spatial integration. In

this study, the forcing term is calculated analytically.

The calculation was done with u0 ¼ 20 and u0 ¼ 40 m/s. The time step is set to 60 s in both cases.
Contour maps of height field and its error after 5 days for u0 ¼ 40 are shown in Figs. 8 and 9, respec-
tively. The height field shown in Fig. 8 is indistinguishable from initial condition (not shown). The largest

error appears in the vicinity of the translating low. This behavior is similar to that of the spectral method

[3,8]. In this case, l1; l2; and l1 errors of v are about the same order of amplitude as those of h. The l2
height errors are smaller than those of the spectral method [3,8]. The difference of the amplitude of l2
height error between the case of u0 ¼ 20 m/s and the case of u0 ¼ 40 m/s is also smaller than that of the

Fig. 8. Height field at Day 5 for Test Case 4 with u0 ¼ 40 m/s.
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spectral method [3,8]. It should be noted that the time integration scheme might be different from that

used in this study.

4.5. Test Case 5 – zonal flow over an isolated mountain

Test Case 5 consists of the solid body rotational flow similar to that of the Test Case 2 with a ¼ 0
impinging on a mountain. The mountain is located at (30�N, 90�W) and has the shape of a cone. Since
the geostrophic balance is broken at the beginning of the calculation due to the existence of the mountain,

the gravity wave arises and spreads all over the sphere. This can be the source of error together with the

discontinuity of the gradient of the mountain.

The calculation was done with time step of 60 s. The height field and its error after 15 days are shown in
Figs. 10 and 11, respectively. The height field shown in Fig. 10 is indistinguishable from the reference

Fig. 9. Height error at Day 5 for Test Case 4 with u0 ¼ 40 m/s. The contour interval is 0.2 m. Negative regions are shaded.

Fig. 10. Height field at Day 15 for Test Case 5. The contour interval is 50 m.
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solution (not shown). Fig. 11 shows that the error due to the gravity wave spreads over the sphere. The

errors of v are about 10 times larger than those of h. The l2 height error is smaller than that of the spectral
method [3,8]. In this study, we use the T341 reference solution while the T213 solution is used in [3,8]. But

this does not cause significant difference in the error measurement. The mass, the energy, and the potential
enstrophy conserve almost in the same order (see Table 3). Although the mass conservation is worse than

that of spectral method, each conservation property is considered to be good enough for practical use. The

error of the total energy is smaller than that of the spectral method using the double Fourier series [3].

4.6. Test Case 6 – Rossby–Haurwitz wave

Test Case 6 is the Rossby–Haurwitz wave of the zonal wavenumber 4. It is the exact analytical solution

of the nonlinear nondivergent barotropic vorticity equation that translates zonally with the shape pre-

served. It is, however, not the solution to the shallow water equations, so the shape is not maintained. The

calculation was done with time step of 60 s. The height field and its error after 14 days are shown in Figs. 12

and 13, respectively. The height field shown in Fig. 12 is almost indistinguishable from reference solution

(not shown). Fig. 13 shows that the error related with the location of the wave is considerably small. It
indicates the high accuracy of our scheme in calculation of the phase speed of the wave. The errors of v are

also about 10 times larger than those of h. The l2 height error is a little bit larger than that of the spectral
method using the double Fourier series [3]. The error becomes large in the polar region due to the spatial

Fig. 11. Height error at Day 15 for Test Case 5. The contour interval is 0.5 m.

Fig. 12. Height field at Day 14 for Test Case 6. The contour interval is 100 m.
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filter. Although the conservation of potential enstrophy is a little bit worse than that of the others, each

value is considered to be good enough for practical use. The error of the total energy is smaller than that of

the spectral method [3,8].

4.7. Test Case 7 – analyzed 500 mb height and wind field initial conditions

Test Case 7 uses the analyzed 500 mb height and wind field as initial conditions. Since the observed data

was obtained as spectral coefficient, the Legendre transform was used to generate the initial values at the

Fig. 13. Height error at Day 14 for Test Case 6. The contour interval is 10 m. Negative regions are shaded.

Fig. 14. Height field at Day 5 for Test Case 7 of the 21 December 1978. The contour interval is 100 m.
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grid points of our scheme. In this study, no further data processing such as nonlinear normal mode ini-

tialization was performed.

The calculation was done with the time step of 60 s. The height field and its error after five days for the

case of 0000 GMT December 21, 1978 are shown in Figs. 14 and 15, respectively. The height field shown in

Fig. 14 is quite similar to the reference solution (not shown). Fig. 15 shows that the errors in the small scales

Fig. 15. Height error at Day 5 for Test Case 7 of the 21 December 1978. The contour interval is 25 m. Negative regions are shaded.

Fig. 16. Height field as a function of time at grid points closest to (40�N, 105�W) for Test Case 7.
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are dominant. In this case, the errors of v are about 100 times larger than those of h. The l2 height error is
smaller than that of the spectral method [3]. Although the conservation of potential enstrophy is a little bit

worse than that of the others, each value is considered to be good enough for practical use. Fig. 16 shows

the trace of the height field at the grid point closest to (40�N, 105�W) for the case of 0000 GMT December
21, 1978. No significant oscillation due to gravity wave is present.

5. Discussion and conclusions

Application to the standard test set for the shallow water equations shows the high accuracy and

resolution of the spectral-like CCD scheme described in Section 2. Results of the error measurements for

all test cases are summarized in Tables 2 and 3. In the case 1 of a linear problem, the accuracy is better

than that of original CCD scheme, and is much better than those of the ordinary central difference

schemes. In this paper, we use the fourth-order Runge–Kutta scheme for the time integration. However,

the time integration scheme used in the double Fourier method by Cheong [2] is not clear. Spotz et al

used a leapfrog time integration [17], but the errors of their spherical harmonics method are smaller than
those of Jakob-Chien et al. [8] who also used a spectral method with leapfrog time integration. The errors

of the spherical harmonics method used in this paper are also much smaller than that reported in [17].

These indicate that the relationship between the time integration scheme and the spatial scheme are not

negligible in comparison. Therefore it is difficult to make direct comparison of our method with others.

However, the errors of our method are of the similar magnitude for all of the test cases, and for the

nonlinear, unsteady cases 5, 6, and 7, they are similar to, or even less than those of the other methods

[3,8,17].

A spatial filtering scheme is improved so that the cutoff wavenumber is easily specified. This filter acts
not only as the smoother to avoid the polar problem but also the hyper viscosity to eliminate the aliasing

error of the nonlinear advection terms. By using this filter, the CFL condition is relaxed, so that the stable

calculations can be performed with the time step that is up to about twice as large as that obtained from the

CFL condition estimated in Section 3.

Table 2

The error measurements after the specified time for each test case

Test Case l1ðhÞ l2ðhÞ l1ðhÞ l1ðvÞ l2ðvÞ l1ðvÞ

1 ða ¼ p=2� 0:05Þ 7.4�10�3 3.8�10�3 2.8�10�3 – – –

2 ða ¼ p=2� 0:05Þ 1.8�10�5 2.4�10�5 5.2�10�5 2.5�10�4 3.9�10�4 2.1�10�3
3 ða ¼ p=3Þ 7.4�10�6 1.6�10�5 1.2�10�4 3.4�10�4 5.8�10�4 2.5�10�3
4 ðu0 ¼ 20Þ 2.1�10�3 7.1�10�4 1.1�10�3 3.0�10�3 1.1�10�3 1.8�10�3
4 ðu0 ¼ 40Þ 3.8�10�3 8.7�10�4 1.0�10�3 5.2�10�3 1.3�10�3 1.4�10�3
5 2.3�10�5 4.0�10�5 3.5�10�4 1.6�10�3 3.2�10�3 1.6�10�2
6 4.0�10�3 5.8�10�3 1.3�10�2 6.2�10�2 6.8�10�2 7.5�10�2
7 9.7�10�4 1.8�10�3 1.9�10�2 1.8�10�1 2.2�10�1 5.6�10�1

Table 3

The error measurements of the global invariants for Test Cases 5–7

Test Case Mass Energy Potential enstrophy Vorticity Divergence

5 1.8�10�6 3.1�10�6 )2.3�10�5 )1.3�10�9 )5.1�10�11
6 2.1�10�6 2.1�10�6 )1.0�10�3 2.2�10�17 )1.1�10�9
7 1.1�10�6 )4.1�10�5 )4.3�10�2 )1.2�10�8 7.5�10�11
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Since both the CCD scheme and the spatial filtering scheme have the same order of operation count

OðNÞ in the one-dimensional calculation with N grid points, the total operation count for our method is

proportional to the total number of grid points, i.e., OðN 2Þ. Therefore this method is the fastest in terms of
the order of the operation count and is advantageous in solving large systems. The computational time for

one time step using 1PE of Fujitsu VPP-5000 is shown in Fig. 17. It exhibits this low growth of the

computational cost. The spherical harmonics model (SH) [7] is also shown in Fig. 17. This spherical

harmonics model is optimized for this vector machine. The time required for our model becomes smaller

than that of the spherical harmonics model for the grid resolution of 512� 256, and the difference becomes
greater for higher resolutions.

There are at least four problems that remain to be studied in the future:

(1) We used a full explicit scheme, which restricts the time step to short interval given by the CFL

condition. Though this restriction is relaxed somewhat by the spatial filter, it increases the total amount of

calculation for the time integration of the given duration. Some semi-implicit scheme and/or some grid

system other than the longitude–latitude grid should be studied for the practical problem.

(2) In this paper, we use the advective form of the shallow water equations considering the application to

the general problem. However, this discrete expression gives no guarantee for the conservation of any
invariants. The property of conservation can be improved by using the conservative forms such as the flux

form that ensures the conservation of mass.

(3) The parameters of the spatial filter are fixed in this study. It should be noted that the effect of spatial

filter in our method becomes stronger as the time step becomes shorter without changing the parameters of

the filter. This feature makes the calculation at high resolution more stable. However, too short time step

causes unnecessary damping. In general, preferable result was obtained for the long time step as possible.

But, at present, the relationship between the adequate time step and filtering is unclear.

(4) The spectral-like CCD scheme can be applied to problems that have boundary such as ocean cir-
culation model and regional climate model. The treatment of the boundary is described in [4]. The formal

Fig. 17. The computational time for one time step calculation of Test Case 2 with a ¼ p=4.
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accuracy degrades at the boundary. The resolution characteristics of the boundary scheme is remained for

the future study. For one-dimensional problems, Kobayashi [9] studied the boundary effects on the global

accuracy and the stability in the case of finite volume method. Similer study is need for the CCD scheme.

The effects of boundary for two-dimensional and three-dimensional problems should be studied for these

applications.

Finally, the test results presented in this study show that our method is thought to be promising for a

variety of numerical models including high-resolution models for weather prediction.
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